Model-based Clustering With Probabilistic Constraints
نویسندگان
چکیده
The problem of clustering with constraints is receiving increasing attention. Many existing algorithms assume the specified constraints are correct and consistent. We take a new approach and model the uncertainty of constraints in a principled manner by treating the constraints as random variables. The effect of specified constraints on a subset of points is propagated to other data points by biasing the search for cluster boundaries. By combining the a posteriori enforcement of constraints with the log-likelihood, we obtain a new objective function. An EM-type algorithm derived by variational method is used for efficient parameter estimation. Experimental results demonstrate the usefulness of the proposed algorithm. In particular, our approach can identify the desired clusters even when only a small portion of data participates in constraints.
منابع مشابه
Support vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملModeling of a Probabilistic Re-Entrant Line Bounded by Limited Operation Utilization Time
This paper presents an analytical model based on mean value analysis (MVA) technique for a probabilistic re-entrant line. The objective is to develop a solution method to determine the total cycle time of a Reflow Screening (RS) operation in a semiconductor assembly plant. The uniqueness of this operation is that it has to be borrowed from another department in order to perform the production s...
متن کاملProbabilistic Semi-Supervised Clustering with Constraints
Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supervision. Such methods use the constraints to either modify the objective function, or to learn th...
متن کاملClustering With Side Information: From a Probabilistic Model to a Deterministic Algorithm
In this paper, we propose a model-based clustering method (TVClust) that robustly incorporates noisy side information as soft-constraints and aims to seek a consensus between side information and the observed data. Our method is based on a nonparametric Bayesian hierarchical model that combines the probabilistic model for the data instance and the one for the side-information. An efficient Gibb...
متن کاملGenerating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms
UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...
متن کاملLoss Reduction in a Probabilistic Approach for Optimal Planning of Renewable Resources
Clean and sustainable renewable energy technology is going to take responsibility of energy supply in electrical power systems. Using renewable sources improve the environment and reduce dependence on oil and other fossil fuels. In distribution power system, utilizing of wind and solar DGs comprises some advantages; consist of loss and emission reduction, and also improvement of voltage profile...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005